Def: Let
$$D \leq \mathbb{R}$$
 and $f: D \rightarrow \mathbb{R}$. We say
that f is uniformly continuous on D
if for every $\varepsilon > 0$ there exists $\delta > 0$
so that if $x, y \in D$ and $|x-y| < \delta$,
then $|f(x) - f(y)| < \varepsilon$.
Note: In normal continuity δ depends on
both ε and a point $x \in D$.
For uniform continuity δ only depends on ε
and works at any points in D.
 ε .
Ex: Let $f(x) = x^2$. Then f is uniformly
continuous on $D = [0, 8]$.
 $pf:$ Let $\varepsilon > 0$.
Suppose $x, y \in [0, 8]$.
Then
 $|f(x) - f(y)| = |x^2 - y^2| = |x+y| |x-y|$
 $\leq (|x| + |y|) ||x-y|$
 $\leq (8+8) ||x-y| = 16 (|x-y|)$.
Let $\delta = \frac{\varepsilon}{16}$.
Then if $x, y \in [0, 8]$ and $||x-y| < \delta$ we get
 $|f(x) - f(y)| \leq 16 ||x-y| < 16 \cdot \delta = 16 \cdot \frac{\varepsilon}{16} = \varepsilon$.

Ex: However,
$$f(x) = x^2$$
 is not uniformly
continuous on $D = [0, \infty)$, even though it is continuous
pf: Let $\varepsilon = 1$.
We will show that for any $\delta 70$ there exist
 $x, y \in D$ with $|x-y| < \delta$ but $|x^2-y^2| > 1$.
Suppose $S > 0$.
Pick any $x, y \in D$ with $|x-y| = \frac{S}{2}$ and
 $x, y > \frac{Z}{5} > 0$

Theorem: Let D⊆R. If f:D→R is uniformly continuous on D, then f is continuous on D. Proof: Let a ED and E70. Since f is uniformly continuous on D, there exists \$70 where if x,y ED and $|x-y| < \delta$, then $|f(x) - f(y)| < \varepsilon$. Thus, if xED and 1x-a1<8, then $|f(x) - f(a)| < \varepsilon.$ So, f is continuous at a.

Theorem: If f is continuous on [a,b],
then f is Uniformly continuous on [a,b]
proof:
Suppose f is continuous on [a,b] but not
Uniformly continuous on [a,b]. We will
show this leads to a contradiction.
Since f is not Uniformly continuous there
exists an
$$\varepsilon_0 > 0$$
 where for any $\varepsilon_0 > 0$
there exist $x,y \in [a,b]$ with $1x-y| < \delta$
but $|f(x) - f(y)| > \varepsilon_0$.
Thus, for each $n > 1$, setting $\delta_n = \frac{1}{n}$, there exist
 $s_n, t_n \in [a,b]$ with $|s_n - t_n| < \frac{1}{n}$
but $|f(s_n) - f(t_n)| > \varepsilon_0$.
So we get two sequences $(s_n)_{n=1}^{\infty}$ and $(t_n)_{n=1}^{\infty}$
contained in $[a,b]$. By Bolzano-Weierstrass
there exist convergent subsequences (s_{n_k})
 $und (t_{n_k}) . Since $a \leq s_{n_k} \leq b$ and $a \leq t_{n_k} \leq b$
We know that if $s = \lim_{k \to \infty} s_{n_k}$ and $t = \lim_{k \to \infty} t_{n_k}$
then $a \leq s \leq b$ and $a \leq t \leq b$ (by HW 2).
Let $d > 0$.$

Since
$$S_{n_k} \rightarrow S$$
, $t_{n_k} \rightarrow t$, and $|s_{n_k} \rightarrow t_{n_k}| < t_{n_k}$
there must exist $k_0 \in \mathbb{N}$ where
 $|S_{n_k} - S| < \frac{s}{3}$ and $|t_{n_k} - t| < \frac{s}{3}$
and $|S_{n_k} - t_{n_k}| < \frac{s}{3}$.

Thus,

$$|s-t| = |s-s_{n_{k}}+s_{n_{k}}-t_{n_{k}}+t_{n_{k}}-t|$$

$$\leq |s-s_{n_{k}}|+|s_{n_{k}}-t_{n_{k}}|+|t_{n_{k}}-t|$$

$$\langle \frac{a}{3}+\frac{a}{3}+\frac{a}{3}=a.$$
So, $|s-t| < a$ for any $a > 0$.
So, $|s-t| < a$ for any $a > 0$.
So, $|s-t| = 0$.
Thus, $s-t = 0$ which gives $s = t$.
Thus, $s-t = 0$ which gives $s = t$.
Thus, $s-t = 0$ which gives $s = t$.
Thus, $s-t = 0$ which gives $s = t$.
Thus, $s-t = 0$ which gives $s = t$.
Thus, $s-t = 0$ which gives $s = t$.
Thus, $s-t = 0$ which gives $s = t$.
Thus, $s-t = 0$ which gives $s = t$.
Thus, $s-t = 0$ which gives $s = t$.
Thus, $s-t = 0$ which gives $s = t$.
Thus, $s-t = 0$ which gives $s = t$.
Thus, $s-t = 0$ which gives $s = t$.
Thus, $s-t = 0$ which gives $s = t$.
Thus, $s-t = 0$ which gives $s = t$.
Thus, $s-t = 0$ which gives $s = t$.
Thus, $s-t = 0$ which gives $s = t$.
Thus, $s-t = 0$ which gives $s = t$.
Thus, $s-t = 0$ which gives $s = t$.
Thus, $s-t = 0$ which gives $s = t$.
Thus, $s-t = 0$ which gives $s = t$.
Thus, $s-t = 0$ which gives $s = t$.
Thus, $s-t = 0$ which gives $s = t$.
Thus, $s = t$.

t

 $|f(s_{n_{k_{i}}}) - f(t_{n_{k_{i}}})| < \varepsilon_{o}$. Contradiction!

Application (Approximating continuous functions)
Let f be continuous on [a,b].
Let
$$\xi = 0$$
. Then the following continuous piecewise
linear function g_{ε} defined on $[a,b]$ will
satisfy $|g_{\varepsilon}(x) - f(x)| < \varepsilon$ for all x .
How to define g_{ε} : Since f is continuous on
 $[a_{1}b]$, it is uniformly continuous on $[a,b]$.
Thus there exists $\delta = 0$ where if $x,y \in [a,b]$
Thus there exists $\delta = 0$ where if $x,y \in [a,b]$
and $|x-y| < \delta$, then $|f(x) - f(y)| < \varepsilon/2$.
and $|x-y| < \delta$, then $|f(x) - f(y)| < \varepsilon/2$.
Satisfies $h < \delta$.
Divide $[a,b]$ into n disjoint intervals of
 $I_{1} = [a, a+h]$
 $I_{2} = [a+2h, a+3h]$
 $i_{n} = [a+(n-1)h, a+nh]$

On each interval $I_{k} = (a+(k-1)h, a+kh)$ define g_{E} to be the linear function that connects the points (a+(k-1)h, f(a+(k-1)h)) and (a+kh, f(a+kh)).

$$\begin{split} |g_{\varepsilon}(x) - f(x)| &\leq |g_{\varepsilon}(x) + f(a + (k - i)h)| \\ &+ |f(a + (k - i)h) - f(x)| \\ &< \varepsilon_{/2} + \varepsilon_{/2} = \varepsilon \end{split}$$

If (2) is true, then
$$|g_{\varepsilon}(x) - f(x)| &\leq |g_{\varepsilon}(x) - f(a + kh)| \\ &+ |f(a + kh) - f(x)| \\ &< \varepsilon_{/2} + \varepsilon_{/2} = \varepsilon . \end{split}$$